Discrete Graph Hashing
نویسندگان
چکیده
Hashing has emerged as a popular technique for fast nearest neighbor search in gigantic databases. In particular, learning based hashing has received considerable attention due to its appealing storage and search efficiency. However, the performance of most unsupervised learning based hashing methods deteriorates rapidly as the hash code length increases. We argue that the degraded performance is due to inferior optimization procedures used to achieve discrete binary codes. This paper presents a graph-based unsupervised hashing model to preserve the neighborhood structure of massive data in a discrete code space. We cast the graph hashing problem into a discrete optimization framework which directly learns the binary codes. A tractable alternating maximization algorithm is then proposed to explicitly deal with the discrete constraints, yielding high-quality codes to well capture the local neighborhoods. Extensive experiments performed on four large datasets with up to one million samples show that our discrete optimization based graph hashing method obtains superior search accuracy over state-of-the-art unsupervised hashing methods, especially for longer codes.
منابع مشابه
On Hashing Graphs
Collision resistant one-way hashing schemes are the basic building blocks of almost all crypto-systems. Use of graph-structured data models are on the rise – in graph databases, representation of biological and healthcare data as well as in modeling systems for representing system topologies. Therefore, the problem of hashing graphs with respect to crypto-systems needs to be studied and address...
متن کاملOrdinal Constrained Binary Code Learning for Nearest Neighbor Search
Recent years have witnessed extensive attention in binary code learning, a.k.a. hashing, for nearest neighbor search problems. It has been seen that high-dimensional data points can be quantized into binary codes to give an efficient similarity approximation via Hamming distance. Among existing schemes, ranking-based hashing is recent promising that targets at preserving ordinal relations of ra...
متن کاملNonparametric link prediction in large scale dynamic networks
We propose a non-parametric link prediction algorithm for a sequence of graph snapshots over time. The model predicts links based on the features of its endpoints, as well as those of the local neighborhood around the endpoints. This allows for different types of neighborhoods in a graph, each with its own dynamics (e.g, growing or shrinking communities). We prove the consistency of our estimat...
متن کاملDeep Discrete Supervised Hashing
Hashing has been widely used for large-scale search due to its low storage cost and fast query speed. By using supervised information, supervised hashing can significantly outperform unsupervised hashing. Recently, discrete supervised hashing and deep hashing are two representative progresses in supervised hashing. On one hand, hashing is essentially a discrete optimization problem. Hence, util...
متن کاملNonparametric Link Prediction in Dynamic Networks
We propose a nonparametric link prediction algorithm for a sequence of graph snapshots over time. The model predicts links based on the features of its endpoints, as well as those of the local neighborhood around the endpoints. This allows for different types of neighborhoods in a graph, each with its own dynamics (e.g, growing or shrinking communities). We prove the consistency of our estimato...
متن کامل